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THE MECHANISM OF THE HARD APPEARANCE OF A TWO-FREQUENCY OSCILLATION MODE 
IN THE CASE OF ANDRONOV-HOPF REVERSE BIFURCATION* 

V.S. AFRAIMOVICH and L.P. VOZOVOI 

The mapping of Poincarh secants is used to prove that a two-frequency 

oscillation mode (2-torus) can arise as a result of the hard loss of 
stability of the equilibrium state. A necessary condition for the 
transition is the presence close to the equilibrium state of a saddle 

periodic motion, the unstable manifold of which is attracted to the 
stationary manifold. At the instant when the cycle vanishes (Andronov- 
Hopf reverse bifurcation) a close-to-homoclinic situation arise, when the 

unstable separatrix of the stationary state returns to a small neighbour- 

hood of it along a stable direction. 

Sufficient conditions are found for the Poincarg mapping to have an 

invariant curve corresponding to the appearance of a 2-torus in the 
initial system of differential equations. The possible connection of 
this scenario of stationary state with torus transition with the observed 

/l, 2/ mixed convection in a vertical layer with wavy boundaries in the 

case of numerical simulation is discussed. 

1. Formulation of the problem. We consider the system of differential equations 

u' = F(u, IL), u E R", p E I-PO, flol (1.1) 

where F is a Cm-smooth or analytic function of u, II. We assume that F (0, 0) = 0 and that, 

when the sign of p changes, an Andronov-Hopf reverse bifurcation occurs in the system. Let 

the equilibrium state 0 at p = 0 be a node with respect to the hyperbolic variable and an 

unstable non-hyperbolic focus in the central manifold. 
In the simplest case n = 3, when there is just one hyperbolic variable z, a smooth 

replacement of the coordinates and time can be used in some domain of variables p and u, 

where Ip 1 and IY 1 are sufficiently small, to reduce system (1.1) to the form 

p' = pp + ps + a&+, 'p' = 0 (1.2) 

i = --)u: + h' (P. cp, 5, p) 

where p and 'p are polar coordinates in the central manifold; the function N includes higher- 

order terms, and N = 0 for x = 0. 

For p>O the system has an equilibrium state (CP) of saddle type. If p<O thereisa 

stableICP andasaddle periodicmotion L, branching from it at the point p = 0. Let Wd (IQ 

*Prikl.Matem.!fekhan.,53,1,32-37,1989 



and Wo” (PI denote respectively the stable and unstable sets (separatrices) of the points 

Owith cr> 0, and WLa(p), WL"(P) the stable and unstable manifolds of the periodic motion 
with p<O. clearly, dim W,“ = 2, dim W,” = 1 when p>O, and dim WL” = 2, dim W,” = 2 
when p<O. 

The basic assumption about the non-local behaviour of the trajectories is that, when 
11=0, the unstable separatrix CP returns to a small neighbourhood of its stable set (a 
situation similar to the formation of a homoclinic). The mathematical statement of this fact 
is given below. Notice that the conditions imposed are of a general type and do not increase 
the codimensionality of the bifurcation. 

Fig.1 Fig.2 

2. Non-local mapping. Consider the behaviour of the trajectories that issue from a 
small neighbourhood of CP 0. Following the approach used in /3, 4/, we construct the 
Poincare' mapping as the superposition of a local mapping (with respect to the trajectories 
close to CP) and a global mapping (with respect to the trajectories that travel into the 
neighbourhood of a non-local piece of the unstable separatrix). 

We take two areas transverse to the trajectories: A = (3: = 10, p < s,), B = {P = PI. 151< 
81). where el<zO, e,< p1 and fairly small positive numbers (Figs.1 and 2). The trace of 

W,% (0) on B can be written as z = 0 (the circle S), and the trace of was (0) on A as 
p=o (the point M,). We shall assume that any semitrajectory that issues from S reaches 
A. This means that a mapping f,, is defined with respect to the trajectories of system (1.1) 
from a small neighbourhood of S on B into A, which is a diffeomorphism both for p = 0, and 
for sufficiently small p>O (we assume that E, is so small that the diffeomorphism f,, 
is defined for all points of B). 

The closed curve f*(s) may (case a, Fig.2) or may not (case b) embrace the point M,,. 
We write the mapping 

(2.1) 

where R, G, P, and V are periodic functions of (pl; corresponding to case a we have r = 1, 
and to case b, I’= 0. 

3. Invariant curve existence theorem. We shall use the principle of contraction 
mappings in the form of /5/ to prove that the Poincarg mapping B-B has an invariant 
curve. Let us recall the relevant conditions. 

Suppose we are given the mappingp 2 =j(z,9)),@ = cp i- g(2.q) (modh), where 9~ R”‘, zE 
R”, mqZ; 1, n > 1; j (2, cph g (2. (P) are differentiable vector functions, 2n-periodic in cp = ('PI, 
. ..( m. We assume that T maps the ring K= {(z.(p): Ilzll<ros cp~ R”‘} into itself. 
introduce into K the matrix or vector norm II(.)(lo=(x~~~Lll(.)ll, where II(.)ll is the Euclid!En 

norm. Then, under the conditions 

11 (E, + &#$')I, = D-’ Q const < m, II 8jlkII ,, < 1 (3.1) 

1 - D-’ 11 aj/ax II o > 2 [D-’ (1 &/L’s II 0 II (&n + 
ag/&)-’ aj/acp IlJ’* 

1 + D-’ (( c3jlax Ilo < 20-l 
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where E, is the (m xm) identity matrix, the mapping T has in K an invariant attracting m- 
dimensional torus. 

Conditions (3.1) impose constraints on the parameter r and the functions R, G, P, and 
V. To state them, we find the transition time from A to B. Integrating the first of Eqs.(1.2), 
we obtain up to higher order terms in p : 

where pa is the coordinate of a point in A, and the constant p1 defines the position of the 
secant B. We take p1 > e,. Then, 

Let g,, denote the mapping A ++ R. We assume that the function N in Eqs.(1.2) identically 

vanishes (in the case N+ 0 the proof is just the same but the working is more complicated). 

For this model case, the mapping g, has the form 

x1 = ro exp (---h&i (PO)), 'pl = 'PO + 0 &I (PO) (3.3) 

(the function t,(p,) is given by (3.2)). 

We write the superposition of mapping h,: g, 0 fll: B * B 

2, = 22 exp (--hL (i;d) 

( ijO is defined in (2.1)). It follows at once from (3.4) that: 

(3.4) 

Lemma 1. Under the condition 

x0 exp (--h& (TiO)) < s1 (3.5) 

the ring B is an absorbing domain of the Poincare' mapping h, (B)E int (B). 
We will now check that conditions (3.1) hold. We shall use the subscripts H and L to 

indicate the maximum and minimum valuesof functions which depend on 'pr: 

ma+, (.) = (*)H, min, (0) = (.)L 

Lemma 2. Conditions (3.1) follow from the inequalities 

l- # 0, D = (1 + aP/acp, + oFo-’ (/A + po2)-“4R/acp,)~ > 0 
E = (AqGS), < 1 
D - E > 2 (V + oG6)~"' (kz,6 @RI@, + z,aGldq,))H"z 
D < 1; 6 = &,-3 (1 + p&-2)-’ 

(3.6) 

where Z, is defined in (3.4). 

Notice that, if the exponential term on the left-hand side of (3.5) is small, then both 

(3.5) and the second and third inequalities of (3.6) must hold, which implies in turn that 

PO must be small. Recalling (3.2), this condition can be written as Poa((?, (when P G PO") 
or as PO In Po<h (when p - &). The first inequality of (3.6) will hold if the functions 

P and R are sufficiently weakly dependent on ml, while apia(p,< 1, amacp, s 1. 

Theorem 1. Under conditions (3.5) and (3.6), the mapping h, for sufficiently small 

Ic>o has a unique closed invariant curve in the ring B. 

Notes. lo. It can be shown that, in the general case N *o, conditions (3.17 certainly 

hold for the Poincare mapping of system (1.1) if the I in (3.6) is replaced by h'2. Con- 

sequently, Theorem 1 also holds in this case. The proof is laborious and is therefore omitted. 

2O. Sufficient conditions (of the type (3.6)) for an invariant curve to exist are 

satisfied for an open set in the class of families of systems which reveal an Andronov-Hopf 
reverse bifurcation, so that they are conditions of general position. 

4. Corollaries (features of mode and pllase portrait changes). The trajectories 

of system (1.1) that pass through the invariant curve, forman attracting 2-torus. In the 

conditions of Theorem 1, this torus has the following features. 

lo. Since a,, is small, see above, the torus has a strongly constricted "throat" of 

radius p,, and an outer shell which closely resembles the unstable manifold W," (k) (Fig.3, 
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Xl? x2 are the phase variables). Since R depends only weakly on 

'Pi (aRlacpr< I), the phase portrait has almost exact axial symmetry. 

20. The time of passing through the throat is much greater than 

the time spent by the phase point in moving along the outer surface 

7 of the torus: t, > a-1. 
3O. The frequency CII of rotation about the inner turns of the 

throat is close to the natural frequency of the damping mode of the 
5 stationary state Oin its domain of stability (with P < 0). 

40. As the parameter p varies, the motion readjusts as follows. 

In the domain p<o, the phase point is attracted to the stable CP, 

-2 0 2 5 though even for fairly small p < 0, 1 p r/z& RL (p), there appears a 

stable 2-torus, to which part of the trajectories (which lie on "half" 

the unstable manifold Wru(p)) is attracted. The remaining trajec- 

Fig.3 
tories in w,"(p) go to CP. For p = 0, the mapping point breaks 
away from the small neighbourhood of CP and approaches the torus 

asymptotically along WO". For p> 0 the torus remains the unique 
attractor in the domain of the phase space considered. 

On varying or_ in the opposite direction, we can see a hard passage to the stationary 

motion with ~1 = pL* (0, 1 pL* I’/*= RL (p). 
Notice that these laws governing the passage from the stationary to the two-frequency 

oscillation mode are in good agreement with those established numerically in /l, 2/ when 

studying convective flowsin a vertical layer with wavily bent boundaries (the absence of 

hysteresis seem5 to be linked with the small undercriticality 1 pL+I<l). 

5. The case of four-dimensional phase space. The above discussion has referred 
to the case when CP with k==o, is a node in the stable set. We shall now as5ume that CP 
is a focus in W,l. Corresponding to this case, the minimum dimensionality n of the phase 
space is four. 

In the neighbourhood of CP 0, we can write system (1.1) a5 

p' = pp + p3 + ap5, q' = 01 (5.1) 

r' = --hr + N, Q' = o2 + M 

where p,tp are the polar coordinates in the central manifold, and r,$ in the transverse 
plane; N and N contain higher-order terms. As earlier, we will confine ourselves to the model 
situation N,Mz 0. Notice that, by following the scheme below, we can prove (under suitable 
conditions) the existence of a 2-torus in the general case N, M f 0. 

Let A = {r = r,,,p< E,),B = {p = &.r< El} be the secants transverse to the trajectories 
of system (1.1). The constants 509 Pl. 51 and r,, are fairly small, while o< so < PI, 0 < 
sr < ro. Weput S,=W,“(O)nB and S,.=W’,,‘(O)nA. We a55ume that every semitrajectory 
starting at a point'of sl reaches A. Hence it follows that, for sufficiently small p and 
e,, there is defined the diffeomorphism f,,: B-A. Under the mapping f,,corresponding to 

the point (rlr $r, %) in B we have the point (p,,Cp,,$,) on the secant A: 

(5.2) 

where R, P, and Q periodic functions of '~1, G, V and W are periodic functions of 'p, and $I, 

and PllP are integers which are evaluated below. 

When constructing the Poincare local mapping g,,: A H B, we note that the expression 
for the transition time t, has the same form (3.2) as before. Integrating system (5.1), we 
obtain 

rl = r. exp (--ht, (PO)) 

'pl = 'Pa + %t" (Pd. $1 = $0 + wn (PO) 

We write the superposition of mappings h, = &Ofp 

F, = r. exp (--hL (6,)) 

(5.3) 

(5.4) 

We have 

Lemma 3. Under the condition 
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10 exp (-at, 60)) < 81 (5.5) 

the secant B is an absorbing domain of the Poincar& mapping h,. 

Note. Since the secant 3 is homeomorphic to the product of the 2-torus with a segment, 
while the flow (1.1) is built up over the Poincarg mapping hF, it can be shown that, when 
r1 = 1 and condition (5.5) holds, there is an absorbent domain for system (1.1) which is 
homeomorphic to the product of a 3-torus with a segment. 

Let us give the conditions under which an absorbent domain which is homeomorphic to the 
product of a circle and a Z-disc is isolated in B. 

Lemma 4. Under the conditions 

ra = 0, o< 61 <Q + ws, + O&l @cl) Q 6a< 2n (5.6) 

there is an absorbent domain with respect to the variable $. 
-- 

For, if we take as the absorbent domain the segment I&, cp], 8(&<&<2n, where rr< & 
and &s> &, then, for sufficiently small e, and M, we have $l~(cl,&). 

Theorem 2. By Lemmas 3 and 4, the mapping h, has in B an absorbent domain B, which is 
homeomorphic to the product of a circle and a Z-disc. 

We will now show that conditions (3.1) hold in the domain B,, where we understand here 
by I the vector (r,$). We have 

Lemma 5. Conditions (3.1) follow from the inequalities 

(5.7) 

(Fris given in (5.4)). 
For (5.7) to hold, the following conditions must be satisfied: t,,>k-' (so that r,<f 

from (5.4)); the functions G, V, and W are sufficiently small (while G<l); and the func- 
tions R, P, and Q depend only weakly on (pl (while aRk&& ~i@,<~). 

Theorem 3. Under conditions (5.5)-(5.7), the Poi.ncar& mapping h, has in the domain B, 
a unique attracting invariant curve , while system (1.1) has a 2-torus. 

6. Concluding remarks. 1’. In systems with a phase space of higher dimensionality 
there can also exist a bifurcation mechanism similar to that discussed. The only difference 
mathematically is that the number of "contracting" coordinates in the mapping increases, 
while conditions of the type (3.1) and [5.7) remain virtually unchanged (the h in them is 
now the decrement of the most weakly damped model. 

20 . The first condition of (3.1) on the phase cp, mapping implies that points which are 
close in phase cannot diverge strongly in time. If we assume the contrary, i.e., that a(P i- 
o&l &))/a% > i (that the mapping 91) cp1 is not one-to-one), then, following /6/, we can 
write conditions under which there is in B a stochastic behaviour of the trajectories. The 
same applies to the case ES= 4 considered in Sect.5. 
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